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Four-color theorem: first major theorem proved using a
computer, K. Appel and W. Haken (1976)

Kepler conjecture: math theorem about sphere packing in R3.

T. Hales, "A proof of the Kepler conjecture”, Annals of Math.
(2005)
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Riemann hypothesis: conjecture that the nontrivial zeros of the
Riemann zeta function ((s) = >, - all lie on the “critical line”

1
Res—z.

The most extensive computer search (2020) for
counterexamples of the Riemann hypothesis has verified it for
[Tm s| < 3.0001753328 - 10'2.
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Variation comparison between infinitely divisible distributions
and the normal distribution

Empirical rule: For a distribution of measurements that is
approx. normal, it follows that the interval with end points

1 £ o contains approx. 68% of measurements,
i =+ 20 contains approx. 95% of measurements,

u % 30 contains almost all of the measurements.

What can we say about general (not necessarily symmetric)
distributions?
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Variation comparison inequality (Hu, Sun, Sun, 2023)

X: random variable with finite second moment, Z ~ N(0, 1).

P{|X—E[X]| < \/Var(X)} > P{|Z] < 1} ~ 0.6827

This inequality holds for most familiar infinitely divisible
continuous distributions: Gamma, Laplace, Gumbel, Logistic,
Pareto, (infinitely divisible) Weibull, log-normal, student’s r,
inverse Gaussian and F distributions.
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Gamma distribution Let o, 3 > 0 and X,, 3 be Gamma random
variable with pdf:

xa—le—x/ﬁ

faﬁ<x> = W, x> 0.

Theorem 1
(Hu, Sun, Sun)

P{|Xaﬁ — E[Xa6]| < \/Var(xaﬁ)} > P{|Z| < 1} ~ 0.6827,

and

i P { s — Bl NGl ) b = Pl1ZI < 1.
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Sketch of proof By the central limit theorem,

P{!Xa,/s — EXopll < \/Var(Xa,ﬁ)}

= P{|Xap — af| < Vap}
= P{[Xa1 -0 < Va}

— P{|Z| <1} as a — .
For o > 0, define
CH-a% oc—le—y

t(@) = P{|Xa1 — 0| < Va} = / y

max{O,afa%} F(Oé)

dy.

We need only show that 7(a + 1) < ().
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It can be shown that for « > 1, 7(a + 1) < #(«v) is equivalent to

1+(a+1)%—a% y a
/ <1 + - ) e dy
0 o+ o

< 1
y «
<1+ 1) e Vdy
o — o2

=

1—(()L+1) 21 +a
< /

It is a bit surprising this inequality is very delicate, which seems
to be unknown in the literature.
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ata?

function of y on [0, 1]. It suffices to show that for o > 1,
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Define

We have

1 « 1 2 «@
{1+4[(a+1)%—ai] <1+ |> “+2(1+ / 1) e /2
o+ a2 o+ a2

= {14+ Di - ad]}ertrei0em0 g braintin

3 4 5
R T
+ T+, 7}
T*T+.T>

A
=
—_
+
N
—
Q
+
—_
1=
Q
1=
Q
L
+
Q
7N
3
i
|
SE
+

oI
Q
1=
M~ = =
N

Wei Sun Concordia University

Variation comparison inequality and Gaussian product inequality



Define

w:=(a+1)
By condition « > 1, we have

0=
1=

—

1

0<w< s, 1—w?>0, 1+2w—w?>>0.
(1 —w?)? 4n?

T T 0 T

Define

- 2w?
A—w)(l+2w—w?) 70— w1 +2w—w?)

P+I

2 3 4 5
T T T
—14r04<7'+2++jL+

T+
3 4+5)7
1 7)2 7 n’t
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We have
Fy = 151 —=w?)’(1 42w —w?)’P,
= 2w(—15— 135w — 345w? + 190w* + 1735w* + 495w°
—3615w% — 716w’ 4 3615w® + 495w° — 1735w!°
+190w!! + 345w — 135w + 15w).
N 1
Set w = m We get
F
Gy = 16384(1+¢)" ==

2w
= —1140603 — 171290464> — 1157863484 — 4683018404°

—12672621604° — 2427446688¢'° — 33936645764
—3517163008¢'* — 27153216004'¢ — 15542092804'% — 6495078404°
—1922867204°% — 381542404** — 45465604%° — 2457604,

which implies that P, is negative.
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We have
H, = 30(1—w?)(1+2w—w»’Q,
= w(—=30 — 255w — 600w* + 410w* + 2900w* + 705w°
—5550w° — 1672w + 5550w® + 705w° — 2900w'°
+410w'" + 600w'? — 255w!3 + 30w'?),
and
H
Iy = 8192(1+4)". ==
w

= —1083048 — 16069911¢> — 1080245684* — 4358580404°
—1178745360¢° — 2259543408¢'° — 31652844164

—3291555328¢'* — 25535155204'¢ — 14710310404'® — 6197248004°
—1852518404¢°% — 371712004** — 44851204°° — 2457604,

which implies that O, is negative.
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Thus,

{1+4[@+ 1! —at]} <1+ ! )ael

1
o+ a2

1/2 \°
+2(1+ /1> e 123
o+ a2

< (1+4w)ef+ 42¢2+ -3

P2 P3 P4
< (1+4w) (1+P++++++ +>

2 "3l T4

oF 0 ot
+2<1+Q++2+3!+4! -3

= R+.
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Define
Ly :=9720000(1 — w?)'(1 + 2w — w?)* W3R, ,

and
V., := —18014398509481984(1 + ¢*)**L. .

By virtue of Mathematica, we can show that R, is negative:
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V+=23565171557938261664962395 +
1985238765536369188253388462 g~2 +
76017937191609745093093565184 g~ 4 +
1815476155917282265018752272232 q"6 +
30868042081839055982554050213660 g~8 +
401897536051918258546845673711320 g~10 +
4195397709111549929883773768957292 g~12 +
36238699732610615067411794056699104 g~14 +
265002286089679374723172860122766982 g~1l6 +
1669237124849349342077586449716389470 q~18 +
9179934813394932229977676436328785920 g~20 +
44555295354320392501114611345123622400 g~22 +
192537160208281140648975165919934835200 g~24 +
746181252269526741637909507751082171520 g~26 +
2609372572626683435719917787491018652160 g~28 +
8276209631283583168755734561689661224960 g~30 +
23913569456882144063241575623509484876800 g~32 +
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63185851825755484161960668172292699909120 g~34 +
153171842040744452342444666253152790732800 g~36 +
341628452529444844018632398179833131991040 g~38 +
702775058219816773204544225960017412751360 g~40 +
1336281286191807830241756821296507838955520 g~ 42
2352931028757956298911312671496544634142720 g~44
3842851078067257537573706091171559356497920 g~46
5829597689354288278514821031866786159656960 g~48
8224048629268397888867021111129844469596160 g~ 50
10800344227796355322915422778734559920914432 g~52
13214925874596962589048294078754839901241344 g~ 54
15075437985869745487585690312752934894436352 g~56
16043253396277674458218536937392302561689600 g~58
15933483495160554733717977505944446676500480 g~ 60
14772181225346687498328707734409833005187072 g~ 62
12786642631638024827680853914736629691449344 g~ 64

+ 4+ 4+ 4+ o+

+ 4+ 4+ + + + +
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10333607587858511627607426462208954269171712 g~66 +
7796135691442288431829216828566360534548480 g~ 68
5489455045169343972022956242977322445045760 g~70
3606053976460179205452292516224406577479680 g~ 72
2208802483012122361676530694278736018145280 g~ 74
1260683716848402925787749700503070572544000 g~ 76
669904634456217504368236284579198848204800 g~78 +
331081492020125941589702200450146757509120 g~ 80 +
152001230583526972614803279225239581491200 g~82 +
64734238129983061042604032362158017740800 g~84 +
25531661312772564369272230408940525977600 g~86 +
9307900274880934185285303838052660019200 g~88 +
3129622227458365558314112917099983667200 g~90 +
968033669852811173795309928049750835200 g~ 92 +
274640462267821497605095290057418342400 g~ 94 +

+ o+ o+ o+ o+
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71224038857339584104332613373237657600 g~96 +
16816854347488682979216179348688076800 g~98 +
3598246400042953802386878316412928000 g~100 +
693860503839280523254707460767744000 g~102 +
119794916777653504670468143054848000 g~104 +
18371891299642536871251828277248000 g~106 +
2478647665316721166509051740160000 g~108 +
290656583441325139861690122240000 g~110 +
29171448597603811259616067584000 g~112 +
2455470675466333890778497024000 g~114 +
168582129968383522599075840000 g~ 116 +
9065459012974557989437440000 g~118 +
358068461185282678456320000 g~120 +
9236522547766697656320000 g~122 +
116733302341443256320000 g~124.
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The variation comparison inequality

P{\X —EX]| < \/Var(X)} > P{|Z| < 1} ~ 0.6827

also holds for Laplace, Gumbel, Logistic and Pareto
distributions.
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Weibull distribution The pdf of Weibull random variable with
parameters k, A > 0 is

( )k_l e_(x/)‘)k, X Z O’
, x < 0.

=

f(X;A,k)Z{ §

Weibull distribution is infinitely divisible iff k € (0, 1].

Theorem 2

(Hu, Sun, Sun) LetX > 0,0 <k <1, X, be a Weibull random
variable with parameters A and k. Then,

P{|X)\,k — E[X)\’k” < 1/V8.1‘X)\’k)} > P{’Z’ < 1} ~ 0.6827.
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Define
Wk =P {|X>\7k — E{X)\,k” < \/W} .

Graph of the function (W, — 0.6827) for k € [1, 10]:
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Log-normal distribution The pdf of log-normal distribution with
parameters y € Rand o > 0 is

2
Juo(x) = ;GXP (_(lnxzu)> , x>0,

2mox 20

Theorem 3

(Hu, Sun, Sun) Letp € R, o > 0 and X,, , be a log-normal
random variable with parameters . and o. Then,

P{ o — Bl < Vo) b > Ul < 1) = 06827

and

it P { K — B ) < Var(e) | = P21 < 1)
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(Hu, Sun, Sun) Letv > 3 and X,, be a student’s t-random
variable with v degrees of freedom. Then,

P {\X,, _EX)]| < \/Var(X,,)} > P{|Z| < 1} ~ 0.6827,

and

inf P {|X, — B[] < v/Var(X,)} = P{1z| < 1}.
Idea of proof: using the Gaussian hypergeometric function:

o ;
F(a,b;c;z) = Z )i(b '.77 lz] <1,
C !
j=0 )

where (a); == a(a+1)---(a+j—1)forj> 1.
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Wei Sun

The pdf of inverse Gaussian (also known as Wald) random
variable X,, » is given by

A Ax — p)?
f#,)\(x) = W exp <—2M2x s x> 0.

Theorem 5

(Hu, Sun, Sun) Letu, X\ > 0 andX,, » be an inverse Gaussian
random variable with parameters . and \. Then,

P{|X A —EX,,]l < \/Var(Xp”A)} > P{|Z| < 1} ~ 0.6827,

and

inf P { X5 — E[X, ]| < \/Var(XW\} = P{|z| < 1}.
,
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A useful tool: Let ® be the cdf of Z. Denote the complementary
error function by

erfc(x \f / eR.

B(x) = %erfo <—\%)

and the following asymptotic expansion

1 /1 1 13 _(2n—3)!!
atel) = e (L gt O
2n— I [t
(2n—1) e’
2”_1\/7? . th

We have

H(=1)"
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(Hu, Sun, Sun) Letd; € {1,2,3,4},5 <d, € N, Xy, 4, be an
F-random variable with parameters d, and d,. Then,

P{ s — B0X ]l < Vo ) } > PUZI < 1} ~ 06827

and

- P{rx%dl) _ ED@))| < \/Var(xz(dl))} |
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Sketch of proof Define

= —>
2(dy+d
d+dy (142454
— —,
o1+ )
d
C:= ! —
2(di+ds)
di+dy (1 — dl(£1127§)>
d,
D =

7d1+(d2—2) (1—,/2(511(:;7531)2)>_
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Prove the following two inequalities:

d- dy

d 2 B ’LI,I 21
207 (1 -A)2 <dy | 127 (1 —1)2 " dt,
JA

dj dy D dj 1 dy 1
2C2(1-0)2 >d2/ 2 (1 =12 dt.
C

Obtain delicate estimates through asymptotic expansions with
the help of Mathematica.

For the case d; > 5, we need prove delicate combinatorial
inequalities.
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The variation comparison inequality

P{|X _E[X]| < \/Var(X)} > P{|Z| <1} ~ 0.6827

also holds for the geometric distribution. But it should be
modified with continuity correction when general discrete
distributions are considered.
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Remarks

Let X3 be a Poisson random variable with parameter 3.

P{|X3 _EXi)| < \/Var(Xg)} = 0.6161<0.6827.
Let B ~ N(0, 1) be independent of X3. Define

X375 = eB + Xj.

lim P { X5 — E[Xp.]| < \/Var(XB,E)} = 0.6161 < 0.6827.

Hence, the variation comparison inequality does not hold for all
infinitely divisible continuous distributions.

Wei Sun Concordia University

Variation comparison inequality and Gaussian product inequality



For n € N, define

7 . 1[1_%71+1}(x)dx.

n

Let ¥, be a compound Poisson random variable with Lévy
measure v,,. Then, Y, converges to X3 in distribution as n — oc.
Hence, Y, does not satisfy the variation comparison inequality
at least if n is large enough.

This simple example shows that the inequality might not hold

even if Lévy measure is absolutely continuous w.r.t. Lebesgue
measure.
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Riemann zeta distribution

Riemann zeta function ¢ is defined initially for complex numbers
z=u+ivwhereu > 1 by

where P denotes the set of all prime numbers.
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For u € R with u > 1, define ¢, : R — C by

C(u+iv)

m, v e R.

ou(v) =

Theorem 7

(Khintchine) For eachu > 1, ¢, is the characteristic function of
an infinitely divisible distribution.

Wei Sun Concordia University

Variation comparison inequality and Gaussian product inequality



Let X, be an infinitely divisible random variable with Lévy

measure
Vy = Z Z fmlog(p )

PpEP m=1

We assume that X,, does not have a Gaussian term.

Does the following variation comparison inequality hold?

P{|XL, —EX,]| < \/Var(XM)} > P{|Z] < 1} ~ 0.6827
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An interesting false conjecture

7(x): the number of primes < x.

li(x) = [y 1.

It has been computed that 7(x) < li(x) for all x < 10* and no
value of x is known for which 7 (x) > li(x). However, in 1914
Littlewood proved that the difference = (x) — li(x) changes sign
infinitely many times.

This example shows the danger of basing conjectures on
numerical evidence!
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Equivalence of Riemann hypothesis and infinite divisibility

For t > 0, define

gc(t) = —4*+e )+ Z (t—logn)

—2((1/4) — logm) + [ (e ,2,1/4) - B(1,2,1/4)]
where ¢ (z) = I"(z)/T'(z) is dgamma function,

Aln) = In(p), 3 primepandk € Z*, n = pk,
"= 0, otherwise.

is Mangoldt function and ®(z, s,a) := >,2, (Ha) is
Hurwitz-Lerch zeta function. Define g¢(r) = g¢(—t) for t < 0.
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The function g, was originally introduced to study equivalent
conditions for the RH in relation to Weil’s positivity or Li’s
criterion, etc.

Theorem 8

(Nakamura and Suzuki, 2023) RH is true iff exp(g¢(t)) is the
characteristic function of an infinitely divisible distribution on R.
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Bell’s theorem: If certain predictions of quantum theory are
correct, then our world is non-local.

Experiments establish that our world is non-local. Very
surprising, since non-locality is normally taken to be prohibited
by the theory of relativity.

Bell’s inequality

Random variables: Z{, i = 1,2, a = a, b, ¢, taking only values
+1. If Z,, = —Z2, Vo (perfectly anti-correlated), then

P(ZL £ Z3) + P2y # 22) + P(ZL £ 22) > 1.

Proof of Bell’s theorem: EPR argument + Bell’s inequality.
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Inequalities involving Gaussian distributions are related to
various fields: e.g., small-ball probabilities, zeros of random
polynomials.

Royen (2014): Gaussian correlation inequality.

For any convex symmetric sets K, L in R” and any centered
Gaussian measure p we have

WK NL) = p(K)u(L).
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Gaussian product inequality conjecture

Li and Wei (2012) For any non-negative real numbers y;,
Jj=1,...,n,and any n-dimensional real-valued centered
Gaussian random vector (X1, ...,X,),

n n
ET]1xP7 | = TTENx.
j=1 j=1
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Russell and Sun, opposite GPI, (2022) Let (X;, X,) be centered
bivariate Gaussian random variables, —1 < y; <0 and y, > 0.

Then,
E[X ' Xo?) < E[1X0[]E[|Xo 7],

and the equality sign holds if and only if X;, X, are independent.
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GPI = ‘real linear polarization constant’ conjecture

For any n > 2, and any collection xy, .. ., x, of unit vectors in R",
there exists a unit vector v € R” such that

(v, x1) - - - (v, x0)]| > n"?
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Hu, Lan and Sun (2019) For any 3-dimensional centered
Gaussian random vector (X,Y,Z),

E [X*"Y*" Z*"] > E[X*"|E[Y*"|E[Z*"], Vm,n € N.

The equality holds if and only if X, Y, Z are independent.
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Intrinsic connection between moments of Gaussian
distributions and the Gaussian hypergeometric functions.

New combinatorial identities

Let I, r € N satisfying I < r. Then we have

— (7 e
Z 2rl - r‘r!(Zr:l)’

Connection with the classical Kummer’s identity.
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Russell and Sun (2022) Let (Xi,...,X,) be a centered
Gaussian random vector such that E[X;X;] > 0 for any i # j.

Then,

n k [ n
2m; 2m; 2m;
eI | =\ 16" B 1] 67| vi<k<n-1,
j=1 j=1 j=k+1

and

o
£ \[1%") = 112"
j=1

Idea of proof: using the Isserlis-Wick formula.
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SOS representation of GPI

Solve the GPI by showing that

n

£ 116" | - T1em™
j=1

j=1
has an SOS representation.

A sums-of-squares (SOS) representation of a polynomial is of
the form Y°7_ f2, where the f;'s are real-coefficient polynomials.
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Non-negative multivariate polynomial may not be SOS.

P,»4: all non-negative polynomials in n variables of degree at
most 2d.

> _n24- @l polynomials in P, 54 that are SOS.

Hilbert (1888) »_,,; = Pu2a if and only if
@n=1ord=1or(nd) =(2,2).

Motzkin polynomial (1967) M(x,y) = x>y* + x*y2 + 1 — 3x%y2.

E [H,’7:1 ij’"-/} itself is an SOS.
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Lemma Let (X1,...,X,) be a centered Gaussian random
vector. Denote by A the covariance matrix of (Xi,...,X,) and
cm,,...m, the coefficient corresponding to the term tf”“ <o g2 of

the polynomial

n 27:1’"/‘
G(l‘l,...,tn): ZAkltktl , ...t ER.
k=1
Then,
" . " (2m
E[Ix"] = zsz;. 1 (1)
- DX (S )
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Let U;, 1 <j < n, be independent standard Gaussian random
variables. Define

n
Xe =) xUy, 1<k<n,
j=1
where each x;; € R, 1 <k,j < n. Then, we have
Ay = Zx,%j, 1<k<n,
j=1

A= xgxy, 1<k<I<n, )
j=1
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Define

n

- -

2mj 2m:

P = E|T[6"| - TT£")
Jj=1 j=1

[ n 1 n
= E[Ix™| - T]im — nuag.
j=1 k=1

By (1) and (2), it is easy to see that F,, ., (A) can be
expressed as a polynomial of the x;;’s, say
thm,mn(xll, ey Xlny oo 9 Xnly ..o ,x,m).
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5D GPI using improved SOS method

Russell and Sun (2023) Lety € [%, o0). For any centered

Gaussian random vector (X1, X», X3, X4, Xs),

E[|X: PX3X3X3X3] > E[1X: PIEIXG]E[XG]EXG]E[X3].
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Moment ratio inequality of bivariate Gaussian distribution

Define
S = {(1,m3) : my > 5} J{(2,m3) : my > 3} J{(ma, m3) : my > my > 3},

1

gy + (14 557) (14 252)

Ymy,mz = (2m2 + 1)(27}13 + 1) + 1, Iy ,my =

and for 1 — <z <1,
my,m3
Hiny my (2)
(my +m3 + 1) (g my = = 1)+ 1/[m3 = m2) (g mgz — DI2 + (2my + 1)} (2my + 1)3z
- 2 z—1 '
my,ms3
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Russell and Sun (2023) Let (X;, X3) be a centered Gaussian
random vector. If (my,m3) € S, then

‘E[X§m2+lX§m3+]]

(2my + 1)(2m3 + DEX™X3™)]

< |Cov (X2, X3)], if |Corr(X2, X3)| < /Ty, m3»
- Hmz,,,,B([Corr(Xz,X3)]2) < |Cov(Xa, X3)|, if \/Buy,my < |Corr(X2,X3)|.

The equality sign holds if and only if X, and X3 are independent.
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